
Computer Architecture
Multicycle CPU Implementation

CS-173 Fundamentals of Digital Systems

Mirjana Stojilović

Spring 2025

https://mirjanastojilovic.github.io/cs173/index.html

Previously on FDS
• CPU Performance

• Processor Implementations

• Single-cycle CPU

2CS-173, © EPFL, Spring 2025

© Woranuch / Adobe Stock

3

Recall: CPU Performance Equation

▪ We can express CPU performance in terms of

• Instruction count (number of instructions executed by the program),

• Average clock cycles per instruction (CPI), and

• Clock cycle time

CS-173, © EPFL, Spring 2025

CPU time
for a program
(in seconds)

Instruction count
for a program

Clock cycle
(in seconds)

CPI

4

Recall: Single-Cycle CPU

▪ In a single-cycle CPU, all operations required by an instruction
are performed within one clock cycle (CPI = 1.0)

CS-173, © EPFL, Spring 2025

CPU time
for a program
(in seconds)

Instruction count
for a program

Clock cycle
(in seconds)

CPI

5

Recall: A Simple Single-Cycle CPU

▪ Let us build a simple CPU supporting the following subset of
RISC-V instructions for simplicity

• R-type arithmetic-logical instructions

• add, sub, and, or

• Memory instructions

• load and store word

• Control flow

• branch if equal

CS-173, © EPFL, Spring 2025

What We Know
A Simple Single-Cycle CPU

CS-173, © EPFL, Spring 2025 6

7

Where We're Heading
A Simple Multicycle CPU

CS-173, © EPFL, Spring 2025

Let's Talk About
• Processor Implementations

• Single-cycle vs. multicycle CPU

• Multicycle CPU

8CS-173, © EPFL, Spring 2025

© EnelEva / Adobe Stock

9

Learning Outcomes

▪ Discover multi-cycle CPU implementation

▪ Advantages of multicycle vs. single-cycle

▪ Understand the schematic
• Functional units

• Control signals

▪ Be able to list and explain instruction steps

CS-173, © EPFL, Spring 2025

10

Quick Outline

▪ Single-cycle vs. multicycle CPU

▪ Multicycle CPU
• Additional registers

• Additional multiplexers

• Control

• Datapath + control

CS-173, © EPFL, Spring 2025

© EnelEva / Adobe Stock

Single-Cycle vs Multicycle

11CS-173, © EPFL, Spring 2025

© EnelEva / Adobe Stock

Operation of the Datapath
R-type Instructions

▪ Performing an R-type instruction
takes four steps

1. Instruction fetched from the instruction
memory, and the PC incremented

2. Two registers read from the register file;
the control unit computes and sets
the control signals correspondingly

3. ALU operates on the data read
from the register file, using bits of
the instruction opcode to generate
the desired ALU function

4. The result from the ALU is written to
the register file

12CS-173, © EPFL, Spring 2025

4 STEPS

Operation of the Datapath
Load Instruction

▪ Performing a load instruction
takes five steps

1. Instruction fetched from the instruction
memory, and the PC incremented

2. Base address read from the register file

3. ALU computes the sum of the value
read and the sign-extended 12 bits of
the instruction (immediate)

4. The sum from the ALU is used as
the address for the data memory

5. The data read from the data memory is
written to the register file

13CS-173, © EPFL, Spring 2025

5 STEPS

Operation of the Datapath
Branch if Equal Instruction

▪ Performing a branch if equal
instruction takes three steps

1. Instruction fetched from the instruction
memory, and the PC incremented

2. Two registers read from the register file

3. ALU subtracts one value from
the other. PC is added with the sign-
extended 12 bits of the instruction
(immediate) << 1, to prepare
the branch target address;
The Zero status bit from the ALU is
used to select the new PC value
(the branch target address or PC+4)

14CS-173, © EPFL, Spring 2025

3 STEPS

15

Single-Cycle vs. Multicycle Implementation

▪ If all instruction steps are performed in a single clock cycle,
we have a single-cycle CPU implementation

CS-173, © EPFL, Spring 2025

The longest combinational
path (the critical path)

determines the maximum
operating frequencyR

e
g

is
te

r

R
e

g
is

te
r

CLK

Note: These two registers could
be the same one (e.g., PC)

Critical path is
now reduced

Critical path is
now reduced

▪ Alternative implementation is a multicycle CPU
• In a multi-cycle implementation, one or more instruction steps take one

clock cycle, and consequently, some instructions take multiple clock cycles

16

Single-Cycle vs. Multicycle Implementation

CS-173, © EPFL, Spring 2025

R
e

g
is

te
r

CLK

R
e

g
is

te
r

R
e

g
is

te
r

Note: These two registers could
be the same one (e.g., PC)

Note: This is an example;
Other multi-cycle
implementations
are also possible

17

Is Single-Cycle CPU More Efficient?

▪ A: No. The clock cycle must be as long
as necessary to accommodate all steps
of all instructions.
• Regardless of the number and complexity

of instruction steps, every instruction takes
the same time (one cycle)

▪ The max frequency is limited by
the longest path any instruction takes

CS-173, © EPFL, Spring 2025

© Frédéric Prochasson / Adobe Stock

18

Why is Multi-Cycle CPU More Efficient?

▪ A: In a multi-cycle implementation, fewer instruction steps take one cycle.
The maximum frequency increases compared to the single-cycle because
now the critical path is shorter. Instructions that require fewer steps will likely
be executed faster. The overall execution time of the program is reduced.

CS-173, © EPFL, Spring 2025

© pawimon / Adobe Stock

19

Other Advantages of Multi-Cycle CPUs

▪ Another important advantage of the multi-cycle implementation
is the ability to reuse a functional unit more than once per
instruction, as long as it is used in different clock cycles

▪ Resource reuse substantially reduces the overall hardware
required, a key consideration in computer architecture

CS-173, © EPFL, Spring 2025

20

What Else is There?
Pipelining

▪ In practice, there exists another implementation technique
called pipelining, in which multiple instructions are overlapped
in execution, and hardware reuse is pushed to the limits

Most modern processors are implemented using this technique,
which comes with a set of challenges of its own

CS-173, © EPFL, Spring 2025

Note: Out of scope for CS-173; taught in CS-200 (Computer Architecture)

CS-173, © EPFL, Spring 2025 21

A Multicycle CPU

22CS-173, © EPFL, Spring 2025

© EnelEva / Adobe Stock

23

Where We're Heading
A Simple Multicycle CPU

CS-173, © EPFL, Spring 2025

24

Multicycle CPU
vs. Single-Cycle CPU

▪ A single memory unit for both instructions and data
• Why? Having more than one cycle available (more time to read

instructions, read/write data) allows memory sharing

▪ A single ALU instead of an ALU and two adders
• Why? The same ALU can be used in different clock cycles

▪ Additional registers to hold the outputs of the functional units
until the value is used (consumed) in a subsequent clock cycle
• Why? Ensure that the value to be used is “stable” for the entire cycle

CS-173, © EPFL, Spring 2025

25

Multicycle CPU

▪ Data used by the same instruction in a later clock cycle must be
stored in the additional registers appended to the functional units

CS-173, © EPFL, Spring 2025

R
e

g
is

te
r

CLK

R
e

g
is

te
r

R
e

g
is

te
r

2nd cycle of
the instruction

1st cycle of
the instruction

26

Multicycle CPU

▪ The location of the additional (temporary values) registers is
determined by what functional units will “fit” in a clock cycle and
what data is needed in later cycles

CS-173, © EPFL, Spring 2025

R
e

g
is

te
r

CLK

R
e

g
is

te
r

R
e

g
is

te
r

2nd cycle of
the instruction

1st cycle of
the instruction

A Multicycle CPU
• Datapath

27CS-173, © EPFL, Spring 2025

© EnelEva / Adobe Stock

28

A Simple Multicycle CPU

▪ Recall: Let us build a simple CPU supporting the following subset
of RISC-V instructions for simplicity

• R-type arithmetic-logical instructions

• add, sub, and, or

• Memory instructions

• load and store word

• Control flow

• branch if equal

CS-173, © EPFL, Spring 2025

29

A Simple Multicycle CPU

▪ Let us assume the CPU clock cycle can accommodate at most

• one memory access,

• one register file access (two reads or one write),

• or an ALU operation.

▪ Q: How many additional temporary registers should we insert,
and where?

CS-173, © EPFL, Spring 2025

30

A Simple Multicycle CPU
Solution

▪ Any data produced by one of these three functional units
(memory, register file, ALU) must be saved into a temporary
register for use in a later cycle.

▪ Five registers should be added
• The instruction register (IR) and the memory data register (MDR)

• Save the output of the shared memory for an instruction or data read

• Two registers because both instruction and data are needed in the same cycle

• Two registers at the register file output, to hold the R-instruction
operands read from the register file

• One register at the output of the ALU, to hold its result

CS-173, © EPFL, Spring 2025

31

Additional Registers
Multicycle CPU Datapath, High-level View

CS-173, © EPFL, Spring 2025
Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.

32

Additional Registers
Multicycle CPU Datapath, High-level View

CS-173, © EPFL, Spring 2025

A register for ALU output

One register per output
of the register file, to hold
the operands for the ALU

Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.

Instruction register (IR) – for the 32-bit
instruction word read from memory

Memory data register (MDR)– for the 32-bit
data word read from memory

33

How Many is Multi?

▪ Recall: Assume the CPU clock cycle can accommodate at most
one memory access, one register file access (two reads or one
write), or an ALU operation

▪ Q: Now that we have inserted additional registers in our CPU,
how many cycles do the instructions take?

▪ A: It depends on the instructions and the functional units they use.
CPI is instruction-dependent, unlike in a single-cycle CPU.

CS-173, © EPFL, Spring 2025

34

Functional Units Sharing
Adding MUXes

▪ In a multicycle CPU, several functional units are shared for
various purposes.

▪ Compared to a single-cycle CPU implementation, we need to add
new multiplexers and expand the already existing ones,
to implement the support for the functional units sharing

CS-173, © EPFL, Spring 2025

35

Additional Multiplexers
Sharing Functional Units

CS-173, © EPFL, Spring 2025
Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.

? ?

?

A MUX to select between PC and ALU output for the next memory address

A MUX to select between the PC
and a register from the register file

A 3-input MUX to allow
the ALU to increment

the PC by 4 or compute
branch target address

36

Functional Units Sharing
Summary

▪ Recall: In a multicycle CPU, several functional units are shared for
various purposes. Therefore, we need to add new multiplexers
and expand the already existing ones.

• New mux to select the output of the ALU (store to data memory) or
the PC (load from instruction memory) as the memory address

• New mux for the first ALU input to select between the register file and
the PC (to allow this ALU also to compute PC = PC+4 or the branch target address)

• Widening the mux on the second ALU input
(to allow this ALU also to compute PC = PC+4 or the branch target address)

CS-173, © EPFL, Spring 2025

CS-173, © EPFL, Spring 2025 37

Multicycle CPU
• Control

38CS-173, © EPFL, Spring 2025

© EnelEva / Adobe Stock

39

A Multicycle CPU
With Some Control Lines Shown

CS-173, © EPFL, Spring 2025

40

A Multicycle CPU
With Some Control Lines Shown

CS-173, © EPFL, Spring 2025

Determines if
the address to
the memory is
supplied from ALUOut
register or the PC

41

A Multicycle CPU
With Some Control Lines Shown

CS-173, © EPFL, Spring 2025

If asserted, memory
contents designated
by the address input
are put on the output

If asserted, memory
contents designated
by the address input
are replaced by
the value on the
Write data input

42

A Multicycle CPU
With Some Control Lines Shown

CS-173, © EPFL, Spring 2025

The output of
the memory is written
into the instruction
register (IR)

If asserted, the register
on the Write reg. input
is written with the value
on the Write data input

Determines if the value fed to
the register file Write data input
comes from the ALUOut
register or from the memory
data register (MDR)

43

A Multicycle CPU
With Some Control Lines Shown

CS-173, © EPFL, Spring 2025

Determines whether
the first ALU operand
is register A
or the PC

Determines whether
the second ALU
operand is register B,
constant 4, or the sign-
extended immediate

44

A Multicycle CPU
With Some Control Lines Shown

CS-173, © EPFL, Spring 2025

Determines if ALU
performs addition
(PC = PC+4, or branch
target address),
subtraction
(comparing two
registers for a branch
if equal instruction),
or another operation

CS-173, © EPFL, Spring 2025 45

Multicycle CPU
• Datapath + Control

46CS-173, © EPFL, Spring 2025

© EnelEva / Adobe Stock

47

Multicycle CPU
Datapath + Control

CS-173, © EPFL, Spring 2025
Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.

48

Multicycle CPU
Datapath + Control

CS-173, © EPFL, Spring 2025
Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.

The opcode field of
the instruction (register IR)
determines the operation
of the ALU via ALUOp

Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.

49

Multicycle CPU
Datapath + Control

CS-173, © EPFL, Spring 2025

Selects the next PC value:
PC + 4 or branch target address

Unconditional PC write:
PCwrite causes an
unconditional write of
the PC, during normal
increment (PC = PC + 4)

Conditional PC write:
PCWriteCond causes
a write of the PC if
the branch condition
is also true (if the Zero
output from the ALU
is also active).

Signal name Effect

RegWrite If asserted, the register on the Write reg. input is written with the value on the Write
data input

ALUSrcA Determines whether the first ALU operand is register A or the PC

MemRead If asserted, memory contents designated by the address input are put on the output

MemWrite If asserted, memory contents designated by the address input are replaced by
the value on the Write data input

MemtoReg Determines if the value fed to the register file Write data input comes from
the ALUOut register or from the memory data register (MDR)

IorD Determines if the address to the memory is supplied from ALUOut register or the PC

IRWrite The output of the memory is written into the instruction register (IR)

PCWrite The PC is written; the source is controlled by PCSource

PCWriteCond The PC is written if the Zero output from the ALU is also active

50

Actions of the 1-bit Control Signals
Summary

CS-173, © EPFL, Spring 2025

Signal name Value Effect

ALUOp 00 addition

01 subtraction

10 The funct field of the instruction determines the operation of the ALU

ALUSrcB 00 The second input to the ALU comes from the register B

01 The second input to the ALU is the constant 4

10 The second input to the ALU is the immediate generated from the instruction
register (IR)

PCSource 00 Output of the ALU (PC+4) is sent to the PC for writing

01 The contents of the ALUOut register (the branch target address)
are sent to the PC for writing

10 Additional functionality (not covered in this example, ignore)

51

Actions of the 2-bit Control Signals
Summary

CS-173, © EPFL, Spring 2025

CS-173, © EPFL, Spring 2025 52

Next Lecture

53CS-173, © EPFL, Spring 2025

© EnelEva / Adobe Stock

Breaking the Instruction
Execution into Clock Cycles

86

Literature

CS-173, © EPFL, Spring 2025

▪ Chapter 4: The Processor
▪ 4.5

Visit online: Link

https://drive.google.com/file/d/1uviu1nH-tScFfgrovvFCrj7Omv8tFtkp/view
https://drive.google.com/file/d/1uviu1nH-tScFfgrovvFCrj7Omv8tFtkp/view

