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Recall: CPU Performance Equation

▪ We can express CPU performance in terms of

• Instruction count (number of instructions executed by the program),

• Average clock cycles per instruction (CPI), and

• Clock cycle time
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Recall: Single-Cycle CPU

▪ In a single-cycle CPU, all operations required by an instruction
are performed within one clock cycle (CPI = 1.0)
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Recall: A Simple Single-Cycle CPU

▪ Let us build a simple CPU supporting the following subset of 
RISC-V instructions for simplicity

• R-type arithmetic-logical instructions

• add, sub, and, or

• Memory instructions

• load  and store word

• Control flow

• branch if equal
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What We Know
A Simple Single-Cycle CPU

CS-173, © EPFL, Spring 2025 6



7

Where We're Heading
A Simple Multicycle CPU
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Let's Talk About
• Processor Implementations

• Single-cycle vs. multicycle CPU

• Multicycle CPU
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Learning Outcomes

▪ Discover multi-cycle CPU implementation

▪ Advantages of multicycle vs. single-cycle

▪ Understand the schematic
• Functional units

• Control signals

▪ Be able to list and explain instruction steps

CS-173, © EPFL, Spring 2025



10

Quick Outline

▪ Single-cycle vs. multicycle CPU

▪ Multicycle CPU
• Additional registers

• Additional multiplexers

• Control

• Datapath + control

CS-173, © EPFL, Spring 2025

© EnelEva / Adobe Stock



Single-Cycle vs Multicycle
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Operation of the Datapath
R-type Instructions

▪ Performing an R-type instruction
takes four steps

1. Instruction fetched from the instruction 
memory, and the PC incremented

2. Two registers read from the register file; 
the control unit computes and sets
the control signals correspondingly

3. ALU operates on the data read
from the register file, using bits of
the instruction opcode to generate
the desired ALU function

4. The result from the ALU is written to
the register file
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4 STEPS



Operation of the Datapath
Load Instruction

▪ Performing a load instruction
takes five steps

1. Instruction fetched from the instruction 
memory, and the PC incremented

2. Base address read from the register file 

3. ALU computes the sum of the value 
read and the sign-extended 12 bits of 
the instruction (immediate)

4. The sum from the ALU is used as
the address for the data memory

5. The data read from the data memory is 
written to the register file
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Operation of the Datapath
Branch if Equal Instruction

▪ Performing a branch if equal
instruction takes three steps

1. Instruction fetched from the instruction 
memory, and the PC incremented

2. Two registers read from the register file

3. ALU subtracts one value from
the other. PC is added with the sign-
extended 12 bits of the instruction 
(immediate) << 1, to prepare
the branch target address;
The Zero status bit from the ALU is 
used to select the new PC value 
(the branch target address or PC+4)
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Single-Cycle vs. Multicycle Implementation

▪ If all instruction steps are performed in a single clock cycle, 
we have a single-cycle CPU implementation
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Critical path is
now reduced

Critical path is
now reduced

▪ Alternative implementation is a multicycle CPU
• In a multi-cycle implementation, one or more instruction steps take one 

clock cycle, and consequently, some instructions take multiple clock cycles
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Single-Cycle vs. Multicycle Implementation
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Is Single-Cycle CPU More Efficient?

▪ A: No. The clock cycle must be as long 
as necessary to accommodate all steps 
of all instructions. 
• Regardless of the number and complexity

of instruction steps, every instruction takes 
the same time (one cycle)

▪ The max frequency is limited by
the longest path any instruction takes
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Why is Multi-Cycle CPU More Efficient?

▪ A: In a multi-cycle implementation, fewer instruction steps take one cycle. 
The maximum frequency increases compared to the single-cycle because 
now the critical path is shorter. Instructions that require fewer steps will likely 
be executed faster. The overall execution time of the program is reduced.
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Other Advantages of Multi-Cycle CPUs

▪ Another important advantage of the multi-cycle implementation 
is the ability to reuse a functional unit more than once per 
instruction, as long as it is used in different clock cycles

▪ Resource reuse substantially reduces the overall hardware 
required, a key consideration in computer architecture
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What Else is There?
Pipelining

▪ In practice, there exists another implementation technique
called pipelining, in which multiple instructions are overlapped
in execution, and hardware reuse is pushed to the limits 

Most modern processors are implemented using this technique, 
which comes with a set of challenges of its own
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A Multicycle CPU
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Where We're Heading
A Simple Multicycle CPU
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Multicycle CPU
vs. Single-Cycle CPU

▪ A single memory unit for both instructions and data
• Why? Having more than one cycle available (more time to read 

instructions, read/write data) allows memory sharing

▪ A single ALU instead of an ALU and two adders
• Why? The same ALU can be used in different clock cycles

▪ Additional registers to hold the outputs of the functional units 
until the value is used (consumed) in a subsequent clock cycle
• Why? Ensure that the value to be used is “stable” for the entire cycle

CS-173, © EPFL, Spring 2025



25

Multicycle CPU

▪ Data used by the same instruction in a later clock cycle must be 
stored in the additional registers appended to the functional units
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Multicycle CPU

▪ The location of the additional (temporary values) registers is 
determined by what functional units will “fit” in a clock cycle and 
what data is needed in later cycles
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A Multicycle CPU
• Datapath
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A Simple Multicycle CPU

▪ Recall: Let us build a simple CPU supporting the following subset
of RISC-V instructions for simplicity

• R-type arithmetic-logical instructions

• add, sub, and, or

• Memory instructions

• load  and store word

• Control flow

• branch if equal
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A Simple Multicycle CPU

▪ Let us assume the CPU clock cycle can accommodate at most

• one memory access, 

• one register file access (two reads or one write), 

• or an ALU operation.

▪ Q: How many additional temporary registers should we insert, 
and where?
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A Simple Multicycle CPU
Solution

▪ Any data produced by one of these three functional units 
(memory, register file, ALU) must be saved into a temporary 
register for use in a later cycle. 

▪ Five registers should be added
• The instruction register (IR) and the memory data register (MDR)

• Save the output of the shared memory for an instruction or data read

• Two registers because both instruction and data are needed in the same cycle

• Two registers at the register file output, to hold the R-instruction 
operands read from the register file

• One register at the output of the ALU, to hold its result
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Additional Registers
Multicycle CPU Datapath, High-level View
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Additional Registers
Multicycle CPU Datapath, High-level View
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A register for ALU output

One register per output
of the register file, to hold
the operands for the ALU

Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.

Instruction register (IR) – for the 32-bit 
instruction word read from memory

Memory data register (MDR)– for the 32-bit 
data word read from memory
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How Many is Multi?

▪ Recall: Assume the CPU clock cycle can accommodate at most 
one memory access, one register file access (two reads or one 
write), or an ALU operation

▪ Q: Now that we have inserted additional registers in our CPU, 
how many cycles do the instructions take? 

▪ A: It depends on the instructions and the functional units they use. 
CPI is instruction-dependent, unlike in a single-cycle CPU.
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Functional Units Sharing
Adding MUXes

▪ In a multicycle CPU, several functional units are shared for 
various purposes. 

▪ Compared to a single-cycle CPU implementation, we need to add 
new multiplexers and expand the already existing ones, 
to implement the support for the functional units sharing
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Additional Multiplexers
Sharing Functional Units

CS-173, © EPFL, Spring 2025
Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.

? ?

?

A MUX to select between PC and ALU output for the next memory address

A MUX to select between the PC
and a register from the register file

A 3-input MUX to allow
the ALU to increment

the PC by 4 or compute 
branch target address
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Functional Units Sharing
Summary

▪ Recall: In a multicycle CPU, several functional units are shared for 
various purposes. Therefore, we need to add new multiplexers 
and expand the already existing ones.

• New mux to select the output of the ALU (store to data memory) or
the PC (load from instruction memory) as the memory address

• New mux for the first ALU input to select between the register file and 
the PC (to allow this ALU also to compute PC = PC+4 or the branch target address)

• Widening the mux on the second ALU input
(to allow this ALU also to compute PC = PC+4 or the branch target address)
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Multicycle CPU
• Control
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A Multicycle CPU
With Some Control Lines Shown
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A Multicycle CPU
With Some Control Lines Shown
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Determines if
the address to
the memory is 
supplied from ALUOut
register or the PC
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A Multicycle CPU
With Some Control Lines Shown
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If asserted, memory 
contents designated 
by the address input 
are put on the output

If asserted, memory 
contents designated 
by the address input 
are replaced by
the value on the 
Write data input
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A Multicycle CPU
With Some Control Lines Shown
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The output of
the memory is  written 
into the instruction 
register (IR)

If asserted, the register 
on the Write reg. input 
is written with the value 
on the Write data input

Determines if the value fed to 
the register file Write data input 
comes from the ALUOut
register or from the memory 
data register (MDR)
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A Multicycle CPU
With Some Control Lines Shown
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Determines whether 
the first ALU operand 
is register A
or the PC

Determines whether 
the second ALU 
operand is register B, 
constant 4, or the sign-
extended immediate
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A Multicycle CPU
With Some Control Lines Shown
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Determines if ALU 
performs addition
(PC = PC+4, or branch 
target address), 
subtraction 
(comparing two 
registers for a branch 
if equal instruction), 
or another operation
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Multicycle CPU
• Datapath + Control
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Multicycle CPU
Datapath + Control
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Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.
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Multicycle CPU
Datapath + Control
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Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.

The opcode field of
the instruction (register IR) 
determines the operation
of the ALU via ALUOp



Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2nd Ed.
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Multicycle CPU
Datapath + Control
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Selects the next PC value: 
PC + 4 or branch target address

Unconditional PC write: 
PCwrite causes an
unconditional write of
the PC, during normal
increment (PC = PC + 4)

Conditional PC write: 
PCWriteCond causes
a write of the PC if
the branch condition
is also true (if the Zero 
output from the ALU
is also active).



Signal name Effect

RegWrite If asserted, the register on the Write reg. input is written with the value on the Write 
data input

ALUSrcA Determines whether the first ALU operand is register A or the PC

MemRead If asserted, memory contents designated by the address input are put on the output

MemWrite If asserted, memory contents designated by the address input are replaced by
the value on the Write data input

MemtoReg Determines if the value fed to the register file Write data input comes from
the ALUOut register or from the memory data register (MDR)

IorD Determines if the address to the memory is supplied from ALUOut register or the PC

IRWrite The output of the memory is written into the instruction register (IR)

PCWrite The PC is written; the source is controlled by PCSource

PCWriteCond The PC is written if the Zero output from the ALU is also active

50

Actions of the 1-bit Control Signals
Summary
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Signal name Value Effect

ALUOp 00 addition

01 subtraction

10 The funct field of the instruction determines the operation of the ALU

ALUSrcB 00 The second input to the ALU comes from the register B

01 The second input to the ALU is the constant 4

10 The second input to the ALU is the immediate generated from the instruction 
register (IR)

PCSource 00 Output of the ALU (PC+4) is sent to the PC for writing

01 The contents of the ALUOut register (the branch target address) 
are sent to the PC for writing

10 Additional functionality (not covered in this example, ignore)
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Actions of the 2-bit Control Signals
Summary
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Next Lecture
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Breaking the Instruction
Execution into Clock Cycles
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Literature
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▪ Chapter 4: The Processor
▪ 4.5

Visit online: Link

https://drive.google.com/file/d/1uviu1nH-tScFfgrovvFCrj7Omv8tFtkp/view
https://drive.google.com/file/d/1uviu1nH-tScFfgrovvFCrj7Omv8tFtkp/view

