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Recall: CPU Performance Equation

= \We can express CPU performance in terms of
* Instruction count (number of instructions executed by the program),
 Average clock cycles per instruction (CPI), and

 Clock cycle time

CPU time Instruction count " Clock cycle

fz;igég%i'}n ~  foraprogram o (in seconds)



Recall: Single-Cycle CPU

= [n a single-cycle CPU, all operations required by an instruction
are performed within one clock cycle (CPI = 1.0)

I

/
”

/
I

CPUtime Instruction count '
foraprogram = X CPI

f
(in seconds) of @ program

Clock cycle
(in seconds)
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Recall: A Simple Single-Cycle CPU

= |_et us build a simple CPU supporting the following subset of
RISC-V instructions for simplicity

* R-type arithmetic-logical instructions
* add, sub, and, or

 Memory instructions
* |oad and store word

e Control flow

* branch if equal



What We Know

A Simple Single-Cycle CPU
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Where We're Heading

A Simple Multicycle CPU
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Let's Talk About

* Processor Implementations

« Single-cycle vs. multicycle CPU
« Multicycle CPU
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Learning Outcomes

= Discover multi-cycle CPU implementation
= Advantages of multicycle vs. single-cycle

» Understand the schematic
* Functional units
 Control signals

= Be able to list and explain instruction steps



Quick Outline

= Single-cycle vs. multicycle CPU

= Multicycle CPU
« Additional registers
« Additional multiplexers
« Control
« Datapath + control
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Single-Cycle vs Multicycle
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Operation of the Datapath

R-type Instructions

= Performing an R-type instruction
takes four steps

1. Instruction fetched from the instruction
memory, and the PC incremented

2. Two registers read from the register file;
the control unit computes and sets
the control signals correspondingly

3. ALU operates on the data read
from the register file, using bits of
the instruction opcode to generate
the desired ALU function

4. Theresult from the ALU is written to
the register file



Operation of the Datapath

Load Instruction

= Performing a load instruction
takes five steps

1.

Instruction fetched from the instruction
memory, and the PC incremented

Base address read from the register file

ALU computes the sum of the value
read and the sign-extended 12 bits of
the instruction (immediate)

The sum from the ALU is used as
the address for the data memory

The data read from the data memory is
written to the register file
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Operation of the Datapath

Branch if Equal Instruction

= Performing a branch if equal
instruction takes three steps

1.

Instruction fetched from the instruction
memory, and the PC incremented

Two registers read from the register file

ALU subtracts one value from

the other. PC is added with the sign-
extended 12 bits of the instruction
(immediate) << 1, to prepare

the branch target address;

The Zero status bit from the ALU is
used to select the new PC value
(the branch target address or PC+4)



Single-Cycle vs. Multicycle Implementation

= |f all instruction steps are performed in a single clock cycle,
we have a single-cycle CPU implementation

Note: These two registers could

The longest combinational
be the same one (e.g., PC)

path (the critical path)
determines the maximum
operating frequency

ox I

Register
Register




Single-Cycle vs. Multicycle Implementation

= Alternative implementation is a multicycle CPU

* In a multi-cycle implementation, one or more instruction steps take one
clock cycle, and consequently, some instructions take multiple clock cycles

Note: These two registers could
be the same one (e.g., PC)

& Critical path is & Critical path is 2
= now reduced > now reduced > Note: This is an example;
o 04 o Other multi-cycle
implementations
are also possible

A
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Is Single-Cycle CPU More Efficient?

= A: No. The clock cycle must be as long
as necessary to accommodate all steps
of all instructions.

» Regardless of the number and complexity
of instruction steps, every instruction takes
the same time (one cycle)

= The max frequency is limited by
the longest path any instruction takes
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Why is Multi-Cycle CPU More Efficient?

» A: In a multi-cycle implementation, fewer instruction steps take one cycle.
The maximum frequency increases compared to the single-cycle because
now the critical path is shorter. Instructions that require fewer steps will likely
be executed faster. The overall execution time of the program is reduced.
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Other Advantages of Multi-Cycle CPUs

= Another important advantage of the multi-cycle implementation
s the ability to reuse a functional unit more than once per
instruction, as long as it is used in different clock cycles

= Resource reuse substantially reduces the overall hardware
required, a key consideration in computer architecture



What Else is There?

Pipelining

= |[n practice, there exists another implementation technique
called pipelining, in which multiple instructions are overlapped
In execution, and hardware reuse is pushed to the limits

Most modern processors are implemented using this technique,

which comes with a set of challenges of its own
Note: Out of scope for CS-173; taught in CS-200 (Computer Architecture)
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A Multicycle CPU
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Where We're Heading

A Simple Multicycle CPU
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Multicycle CPU

vs. Single-Cycle CPU

= A single memory unit for both instructions and data

- Why? Having more than one cycle available (more time to read
instructions, read/write data) allows memory sharing

= A single ALU instead of an ALU and two adders
« Why? The same ALU can be used in different clock cycles

= Additional registers to hold the outputs of the functional units
until the value is used (consumed) in a subsequent clock cycle
« Why? Ensure that the value to be used is “stable” for the entire cycle



Multicycle CPU

» Data used by the same instruction in a later clock cycle must be
stored in the additional registers appended to the functional units

18t cycle of
the instruction

2nd cycle of
the instruction

Register
Register
Register

>

CLK T l




Multicycle CPU

= The location of the additional (temporary values) registers is
determined by what functional units will “fit" in a clock cycle and

what data is needed in later cycles

18t cycle of
the instruction

Register

2nd cycle of
the instruction

Register
Register

>

CLK T l




A Multicycle CPU

« Datapath
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A Simple Multicycle CPU

= Recall: Let us build a simple CPU supporting the following subset
of RISC-V instructions for simplicity

* R-type arithmetic-logical instructions
* add, sub, and, or

 Memory instructions
* |oad and store word

e Control flow

* branch if equal



A Simple Multicycle CPU

= _et us assume the CPU clock cycle can accommodate at most
* ONe MeMmaory access,
* one register file access (two reads or one write),
« or an ALU operation.

= Q: How many additional temporary registers should we insert,
and where?

CS-173, © EPFL, Spring 2025
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A Simple Multicycle CPU

Solution

= Any data produced by one of these three functional units
(memory, register file, ALU) must be saved into a temporary
register for use in a later cycle.

= Five registers should be added

 The instruction register (IR) and the memory data register (MDR)
 Save the output of the shared memory for an instruction or data read
» Two registers because both instruction and data are needed in the same cycle

« Two registers at the register file output, to hold the R-instruction
operands read from the register file

« One register at the output of the ALU, to hold its result
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Additional Registers

Multicycle CPU Datapath, High-level View

N Instruction
register _
PC He»| Address g > Data INER
Instruction o+ Register #
Memory ©OFdata|—¢ Registers ALU &> ALUOuUtH
¢>| Register #
Memory - B
Data > dala e Register #
register
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Additional Registers

Multicycle CPU Datapath, High-level View

One register per output

Instruction register (IR) — for the 32-bit of the register file, to hold

instruction word read from memory the operands for the ALU A register for ALU output
Instruction
- register
PC He» Address » Data NN
Instruction o> Reqister #
Memory ©OFdata|—¢ Registers >ALU ALUOut H
&> Register #
Memory . B
Data | data  Ge Register # [
register

Memory data register (MDR)— for the 32-bit

CS-173, © EPFL, Spring 2 data word read from memory
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How Many is Multi?

= Recall: Assume the CPU clock cycle can accommodate at most
one memory access, one register file access (two reads or one
write), or an ALU operation

= Q: Now that we have inserted additional registers in our CPU,
how many cycles do the instructions take?

= A: It depends on the instructions and the functional units they use.
CPlis instruction-dependent, unlike in a single-cycle CPU.

CS-173, © EPFL, Spring 2025
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Functional Units Sharing

Adding MUXes

* |n a multicycle CPU, several functional units are shared for
various purposes.

= Compared to a single-cycle CPU implementation, we need to add
new multiplexers and expand the already existing ones,
to implement the support for the functional units sharing



Additional Multiplexers

Sharing Functional Units A MUX to select between the PC
and a register from the register file

A MUX to select between PC and ALU output for the next memory address

PC L | Read L
? | Address - | register 1 Read A 2
. data 1
Memory | Read _L“
MemData Les| INStruction register 2
register | Registers = ALUOut F
Write Read
| Write register data 2 ™| B —
dat 4= 9
o Write N
data )
Memory :
~| data > A 3-input MUX to allow
register the ALU to increment
the PC by 4 or compute
branch target address
CS-173, © EPFL, Spring 2025 & 35

Figures from “Computer Organization and Design: RISC-V Edition,” Patterson & Hennessy, 2 Ed.



Functional Units Sharing

Summary

= Recall: In a multicycle CPU, several functional units are shared for
various purposes. Therefore, we need to add new multiplexers
and expand the already existing ones.

« New mux to select the output of the ALU (store to data memory) or
the PC (load from instruction memory) as the memory address

« New mux for the first ALU input to select between the register file and
the PC (to allow this ALU also to compute PC = PC+4 or the branch target address)

« Widening the mux on the second ALU input
(to allow this ALU also to compute PC = PC+4 or the branch target address)
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Multicycle CPU

 Control
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A Multicycle CPU

With Some Control Lines Shown
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A Multicycle CPU

With Some Control Lines Shown

Determines if

the address to

the memory is
supplied from ALUOut
register or the PC
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A Multicycle CPU

With Some Control Lines Shown
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A Multicycle CPU

With Some Control Lines Shown
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A Multicycle CPU

With Some Control Lines Shown

Determines whether
the first ALU operand
IS register A

or the PC

Determines whether
the second ALU
operand is register B,

constant 4, or the sign-

extended immediate
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A Multicycle CPU

With Some Control Lines Shown

Determines if ALU
performs addition

(PC = PC+4, or branch
target address),
subtraction - —-
(comparing two
registers for a branch
if equal instruction),
or another operation
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Multicycle CPU

» Datapath + Control
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Multicycle CPU

Datapath + Control
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° rd
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Multicycle CPU

Datapath + Control

Conditional PC write:
causes

a write of the PC if

the branch condition

is also true (if the Zero

output from the ALU

is also active).

Unconditional PC write:
causes an
unconditional write of
the PC, during normal
increment (PC = PC + 4)
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Actions of the 1-bit Control Signals

Summary

Signal name

Effect

If asserted, the register on the Write reg. input is written with the value on the Write
data input

Determines whether the first ALU operand is register A or the PC

If asserted, memory contents designated by the address input are put on the output

If asserted, memory contents designated by the address input are replaced by
the value on the Write data input

Determines if the value fed to the register file Write data input comes from
the ALUOut register or from the memory data register (MDR)

Determines if the address to the memory is supplied from ALUOut register or the PC

The output of the memory is written into the instruction register (IR)

The PC is written; the source is controlled by

CS-173, © EPFL, Spring 2025

The PC is written if the Zero output from the ALU is also active

50



Actions of the 2-bit Control Signals

Summary

Signal name

Value Effect

CS-173, © EPFL, Spring 2025

00 addition

0T subtraction

10 The funct field of the instruction determines the operation of the ALU

00 The second input to the ALU comes from the register B

0T The second input to the ALU is the constant 4

10 The second input to the ALU is the immediate generated from the instruction
register (IR)

00 Output of the ALU (PC+4) is sent to the PC for writing

0T The contents of the ALUOut register (the branch target address)
are sent to the PC for writing

10 Additional functionality (not covered in this example, ignore)
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Breaking the Instruction
Execution into Clock Cycles

Next Lecture
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